// VERSION=3 // QuickFire V1.0.0 by Pierre Markuse (https://twitter.com/Pierre_Markuse) // Made for use in the Sentinel Hub EO Browser (https://apps.sentinel-hub.com/eo-browser/?) // CC BY 4.0 International (https://creativecommons.org/licenses/by/4.0/) function setup() { return { input: ["B01","B02","B03","B04","B08","B8A","B11","B12","CLP", "dataMask"], output: { bands: 4 } }; } function stretch(val, min, max) {return (val - min) / (max - min);} function satEnh(arr, s) { var avg = arr.reduce((a, b) => a + b, 0) / arr.length; return arr.map(a => avg * (1 - s) + a * s); } function layerBlend(lay1, lay2, lay3, op1, op2, op3) { return lay1.map(function(num, index) { return (num / 100 * op1 + (lay2[index] / 100 * op2) + (lay3[index] / 100 * op3)); }); } function evaluatePixel(sample) { const hsThreshold = [2.0, 1.5, 1.25, 1.0]; const hotspot = 1; const style = 1; const hsSensitivity = 1.0; const boost = 1; const cloudAvoidance = 1; const cloudAvoidanceThreshold = 245; const avoidanceHelper = 0.8; const offset = -0.000; const saturation = 1.10; const brightness = 1.00; const sMin = 0.01; const sMax = 0.99; const showBurnscars = 0; const burnscarThreshold = -0.25; const burnscarStrength = 0.3; const NDWI = (sample.B03-sample.B08)/(sample.B03+sample.B08); const NDVI = (sample.B08-sample.B04)/(sample.B08+sample.B04); const waterHighlight = 0; const waterBoost = 2.0; const NDVI_threshold = -0.15; const NDWI_threshold = 0.15; const waterHelper = 0.2; const Black = [0, 0, 0]; const NBRindex = (sample.B08-sample.B12) / (sample.B08+sample.B12); const naturalColorsCC = [Math.sqrt(brightness * sample.B04 + offset), Math.sqrt(brightness * sample.B03 + offset), Math.sqrt(brightness * sample.B02 + offset)]; const naturalColors = [(2.5 * brightness * sample.B04 + offset), (2.5 * brightness * sample.B03 + offset), (2.5 * brightness * sample.B02 + offset)]; const URBAN = [Math.sqrt(brightness * sample.B12 * 1.2 + offset), Math.sqrt(brightness * sample.B11 * 1.4 + offset), Math.sqrt(brightness * sample.B04 + offset)]; const SWIR = [Math.sqrt(brightness * sample.B12 + offset), Math.sqrt(brightness * sample.B8A + offset), Math.sqrt(brightness * sample.B04 + offset)]; const NIRblue = colorBlend(sample.B08, [0, 0.25, 1], [[0/255, 0/255, 0/255],[0/255, 100/255, 175/255],[150/255, 230/255, 255/255]]); const classicFalse = [sample.B08 * brightness, sample.B04 * brightness, sample.B03 * brightness]; const NIR = [sample.B08 * brightness, sample.B08 * brightness, sample.B08 * brightness]; const atmoPen = [sample.B12 * brightness, sample.B11 * brightness, sample.B08 * brightness]; var enhNaturalColors = [0, 0, 0]; for (let i = 0; i < 3; i += 1) { enhNaturalColors[i] = (brightness * ((naturalColors[i] + naturalColorsCC[i]) / 2) + (URBAN[i] / 10)); } const manualCorrection = [0.00, 0.00, 0.00]; var Viz = layerBlend(URBAN, naturalColors, naturalColorsCC, 10, 40, 50); // Choose visualization(s) and opacity here if (waterHighlight) { if ((NDVI < NDVI_threshold) && (NDWI > NDWI_threshold) && (sample.B04 < waterHelper)) { Viz[1] = Viz[1] * 1.2 * waterBoost + 0.1; Viz[2] = Viz[2] * 1.5 * waterBoost + 0.2; } } Viz = satEnh(Viz, saturation); for (let i = 0; i < 3; i += 1) { Viz[i] = stretch(Viz[i], sMin, sMax); Viz[i] += manualCorrection[i]; } if (hotspot) { if ((!cloudAvoidance) || ((sample.CLP<cloudAvoidanceThreshold) && (sample.B02<avoidanceHelper))) { switch (style) { case 1: if ((sample.B12 + sample.B11) > (hsThreshold[0] / hsSensitivity)) return [((boost * 0.50 * sample.B12)+Viz[0]), ((boost * 0.50 * sample.B11)+Viz[1]), Viz[2], sample.dataMask]; if ((sample.B12 + sample.B11) > (hsThreshold[1] / hsSensitivity)) return [((boost * 0.50 * sample.B12)+Viz[0]), ((boost * 0.20 * sample.B11)+Viz[1]), Viz[2], sample.dataMask]; if ((sample.B12 + sample.B11) > (hsThreshold[2] / hsSensitivity)) return [((boost * 0.50 * sample.B12)+Viz[0]), ((boost * 0.10 * sample.B11)+Viz[1]), Viz[2], sample.dataMask]; if ((sample.B12 + sample.B11) > (hsThreshold[3] / hsSensitivity)) return [((boost * 0.50 * sample.B12)+Viz[0]), ((boost * 0.00 * sample.B11)+Viz[1]), Viz[2], sample.dataMask]; break; case 2: if ((sample.B12 + sample.B11) > (hsThreshold[3] / hsSensitivity)) return [1, 0, 0, sample.dataMask]; break; case 3: if ((sample.B12 + sample.B11) > (hsThreshold[3] / hsSensitivity)) return [1, 1, 0, sample.dataMask]; break; case 4: if ((sample.B12 + sample.B11) > (hsThreshold[3] / hsSensitivity)) return [Viz[0] + 0.2, Viz[1] - 0.2, Viz[2] - 0.2, sample.dataMask]; break; default: } } } if (showBurnscars) { if (NBRindex<burnscarThreshold) { Viz[0] = Viz[0] + burnscarStrength; Viz[1] = Viz[1] + burnscarStrength; } } return [Viz[0], Viz[1], Viz[2], sample.dataMask]; }
// VERSION=3 // QuickFire V1.0.0 by Pierre Markuse (https://twitter.com/Pierre_Markuse) // Adjusted for use in the Copernicus Browser (https://dataspace.copernicus.eu/browser/) // CC BY 4.0 International (https://creativecommons.org/licenses/by/4.0/) // Copernicus Browser does not have the band CLP, this was replaced with the isCloud() function // but do try to turn off cloudAvoidance if results aren't as expected. function setup() { return { input: ["B02", "B03", "B04", "B08", "B8A", "B11", "B12", "dataMask"], output: { bands: 4 } }; } function isCloud(samples) { const NGDR = index(samples.B03, samples.B04); const bRatio = (samples.B03 - 0.175) / (0.39 - 0.175); return bRatio > 1 || (bRatio > 0 && NGDR > 0); } function stretch(val, min, max) { return (val - min) / (max - min); } function satEnh(arr, s) { var avg = arr.reduce((a, b) => a + b, 0) / arr.length; return arr.map(a => avg * (1 - s) + a * s); } function layerBlend(lay1, lay2, lay3, op1, op2, op3) { return lay1.map(function (num, index) { return (num / 100 * op1 + (lay2[index] / 100 * op2) + (lay3[index] / 100 * op3)); }); } function evaluatePixel(sample) { const hsThreshold = [2.0, 1.5, 1.25, 1.0]; const hotspot = 1; const style = 1; const hsSensitivity = 1.0; const boost = 1.2; const cloudAvoidance = 1; const avoidanceHelper = 0.8; const offset = -0.007; const saturation = 1.10; const brightness = 1.40; const sMin = 0.15; const sMax = 0.99; const showBurnscars = 0; const burnscarThreshold = -0.25; const burnscarStrength = 0.3; const NDWI = (sample.B03 - sample.B08) / (sample.B03 + sample.B08); const NDVI = (sample.B08 - sample.B04) / (sample.B08 + sample.B04); const waterHighlight = 0; const waterBoost = 2.0; const NDVI_threshold = 0.05; const NDWI_threshold = 0.0; const waterHelper = 0.1; const Black = [0, 0, 0]; const NBRindex = (sample.B08 - sample.B12) / (sample.B08 + sample.B12); const naturalColorsCC = [Math.sqrt(brightness * sample.B04 + offset), Math.sqrt(brightness * sample.B03 + offset), Math.sqrt(brightness * sample.B02 + offset)]; const naturalColors = [(2.5 * brightness * sample.B04 + offset), (2.5 * brightness * sample.B03 + offset), (2.5 * brightness * sample.B02 + offset)]; const URBAN = [Math.sqrt(brightness * sample.B12 * 1.2 + offset), Math.sqrt(brightness * sample.B11 * 1.4 + offset), Math.sqrt(brightness * sample.B04 + offset)]; const SWIR = [Math.sqrt(brightness * sample.B12 + offset), Math.sqrt(brightness * sample.B8A + offset), Math.sqrt(brightness * sample.B04 + offset)]; const NIRblue = colorBlend(sample.B08, [0, 0.25, 1], [[0 / 255, 0 / 255, 0 / 255], [0 / 255, 100 / 255, 175 / 255], [150 / 255, 230 / 255, 255 / 255]]); const classicFalse = [sample.B08 * brightness, sample.B04 * brightness, sample.B03 * brightness]; const NIR = [sample.B08 * brightness, sample.B08 * brightness, sample.B08 * brightness]; const atmoPen = [sample.B12 * brightness, sample.B11 * brightness, sample.B08 * brightness]; var enhNaturalColors = [0, 0, 0]; for (let i = 0; i < 3; i += 1) { enhNaturalColors[i] = (brightness * ((naturalColors[i] + naturalColorsCC[i]) / 2) + (URBAN[i] / 10)); } const manualCorrection = [0.04, 0.00, -0.05]; var Viz = layerBlend(URBAN, SWIR, naturalColorsCC, 10, 10, 90); // Choose visualization(s) and opacity here if (waterHighlight) { if ((NDVI < NDVI_threshold) && (NDWI > NDWI_threshold) && (sample.B04 < waterHelper)) { Viz[1] = Viz[1] * 1.2 * waterBoost + 0.1; Viz[2] = Viz[2] * 1.5 * waterBoost + 0.2; } } Viz = satEnh(Viz, saturation); for (let i = 0; i < 3; i += 1) { Viz[i] = stretch(Viz[i], sMin, sMax); Viz[i] += manualCorrection[i]; } if (hotspot) { if ((!cloudAvoidance) || (!isCloud(sample) && (sample.B02 < avoidanceHelper))) { switch (style) { case 1: if ((sample.B12 + sample.B11) > (hsThreshold[0] / hsSensitivity)) return [((boost * 0.50 * sample.B12) + Viz[0]), ((boost * 0.50 * sample.B11) + Viz[1]), Viz[2], sample.dataMask]; if ((sample.B12 + sample.B11) > (hsThreshold[1] / hsSensitivity)) return [((boost * 0.50 * sample.B12) + Viz[0]), ((boost * 0.20 * sample.B11) + Viz[1]), Viz[2], sample.dataMask]; if ((sample.B12 + sample.B11) > (hsThreshold[2] / hsSensitivity)) return [((boost * 0.50 * sample.B12) + Viz[0]), ((boost * 0.10 * sample.B11) + Viz[1]), Viz[2], sample.dataMask]; if ((sample.B12 + sample.B11) > (hsThreshold[3] / hsSensitivity)) return [((boost * 0.50 * sample.B12) + Viz[0]), ((boost * 0.00 * sample.B11) + Viz[1]), Viz[2], sample.dataMask]; break; case 2: if ((sample.B12 + sample.B11) > (hsThreshold[3] / hsSensitivity)) return [1, 0, 0, sample.dataMask]; break; case 3: if ((sample.B12 + sample.B11) > (hsThreshold[3] / hsSensitivity)) return [1, 1, 0, sample.dataMask]; break; case 4: if ((sample.B12 + sample.B11) > (hsThreshold[3] / hsSensitivity)) return [Viz[0] + 0.2, Viz[1] - 0.2, Viz[2] - 0.2, sample.dataMask]; break; default: } } } if (showBurnscars) { if (NBRindex < burnscarThreshold) { Viz[0] = Viz[0] + burnscarStrength; Viz[1] = Viz[1] + burnscarStrength; } } return [Viz[0], Viz[1], Viz[2], sample.dataMask]; }
The script visualizes wildfires from Sentinel-2 data. It was published by Pierre Markuse on his blog [1] in September 2022.
Wildfire east of Split, Croatia. Acquired on 17.7.2017.
[1] P. Markuse, QuickFire 1.0 – Visualizing Fires in the Sentinel Hub EO Browser [2] P. Markuse, Visualizing (Wild)Fires in Sentinel-2 imagery through EO Browser. August 2017. [3] P. Markuse, Visualizing Wildfires and Burn Scars with the Sentinel Hub EO Browser V2, May 2018